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diameter; 25.0 cm V/) vertically divided into 2 equal On every day of the experiments, the chamber flow-
compartments each 12.5-cm wide. The cage was rotated through atmosphere was equilibrated and stabilized and
horizontally by a 4-rpm geared motor to provide a its HCN gas concentration was determined, When the
circumferential velocity of 8.5 cm/sec. The front corn- HCN concentration stabilized at the desired exposure
partment of the cage was used for the animal tests. A level, a chamber atmosphere sample for zero min was
gasketed access-door (10.4 cm X 10.4 cm) on the front withdrawn from the access-door port for the 14CN
panel of the chamber aL the cage floor level allowed rapid analysis. Following this, the chamber fans and cage
animal insertion into, and removal from, the cage. There motor were turned off, timer was set to zero, and
were 2 fans, I on each side of the chamber; I fan was at retaining screws on the chamber access-door were re-
the upper part and the other at the lower part of the moved. Then, in rapid succession, the door was opened,
chamber. These fans were for homogeneous mixing and a rat was inserted into the cage, the door was closed, and
circulation of the gas-1ir mixture in the flow-through the timer, cage motor, and fans were activated,
chamber atmosphere, There were 2 ports sealed with
rubber septa on the front panel of the chamber. Fifty rats were individually exposed to the gas at each

of the 2 concentrations to determine variations of t, and
The HCN gas and air from cylinders were mixed by of blood CN" at incapacitation. For the relative rates of

passing through a baffled cylindrical mixing tube before HCN uptake at the 2 exposure concentrations, addi-
entering the chamber. Flow rates of the gas and air were tional rats were singly exposed for intervals less than t,;
regulated automatically using Scott model 5850E mass the exposure intervals were 1, 2, 3, and 4 min for the 5-
flow controllers attached to a Scott model 5878A power min experiments (4 rats/exposure interval), while they
supply/control unit (Scott Environmental Technology, were 2.5, 5, 10, 15, and 25 min for the 35-min tests (3
Inc., Plumsteadville, PA). The input of gas-air mixtures animals/exposure interval). At incapacitation or at the
was through a port in the top of the chamber. The entire end of each exposure interval, rats were quickly removed
chamber was installed in a fume hood into which the from the chamber and killed (by cervical dislocation) for
chamber exhaust was vented, blood collection and CN" determination.

Experimental Protocol The criterion for incapacitation was the inabilityofthe rat
Preliminary I-ICN gas concentrations for producing towalk, i.e.,when tumblingorslidingbegan, as subjectively
incapacitation at 5- and 35-min exposure times were determined by 2 individuals. The t, was recorded as the time
calculated from the concentration-t, curve described in a from insertion of the rat until it could no longer walk in the
previous study (Crane, et al., 1989). The airflow into the rotating cage. Besides the zero-min samples, chamber HCN
chamber vas established at 4 L/min; the HCN gas flow samples were collected at I and 4 min in the 5-min t, study
was adjusted to produce the estimated gas concentra- and at 1, 5, 15, and occasionally, at 30 min in the 35-min t,
tions required in the chamber. The HCN concentrations study. HCN gas measurements at these intervals were
were refined by t, measurements using 32 rats. Based on conducted to describe the gas concentration with time
these experiments, gas concentrations produced by flow during the animal exposure. Findings from these measure-
rates of(80 mL/min of'9239 ppm HCN + 4 L/rin air) ments indicated that the gas concentration did not signifi-
and (25 mL/min of 9239 ppm HCN + 4 L/rnin air) were candychangeduringtheexposure; typical concentration-time
adopted for the !- and 35-min t, study, respectively. The relationships fbr the 5- and 35-min study are illustrated in
nominal dynamic flow of gas-air mixtures at 4 L/min Figure 2. This allowed the assumption that the gas concen-
prevented major HCN concentration changes during tration at t, (or the end of the applicable selected exposure
the rat insertion, exposure, or removal. Initial experi- intervals) was essentially identical to that in the chamber
ments suggested that ambient 02 levels did not change sample immediately preceding incapacitation (or the expo-
for single rat exposures by the HCN-air mixture flows sure interval). Since the rapid removal of the exposed animal
through the chamber; therefore, 02 concentration wo, at a particular time prohibited the simultaneous manual
not monitored during the animal exposure experiments. sampling of the chamber atmosphere, the HCN gas

3



concentration at incapacitation (or the exposure inter- rate of 0.4 mL/min. The condensate (resampled at 0.8
val) was estimated by extrapolating the value of the mL/min), phosphate buffer (0.42 mL/min), air (0.6 mL/

preceding concentration to the t, (or exposure time). min), chloramine-T (0.1 mL/min), ar.l then, th. .,yri-
HCN exposure concentration for each experiment was dine-barbituric acid reagent (0,8 mL/min) '.. re. sequen-
obtained by the integration of chamber HCN concen- tially mixed and flowed through the colorimeter cell.

tration as a function of exposure time from t - 0 to t - t1  The color intensity of the reaction mixture was measured
(or exposure time) and dividing the resulting product by using a 570 nm filter; the absorption for each sample was
t, (or exposure time), i.e., registered on the recorder. The flow rates of wastes from

ft - tCdt the condenser, and from the flow cell, were 1.0 mUL/min.
E t - 0 A water blank was inserted between each of the test

ti samples. This system operated at a sampling rate of 20
samples/hour with a sample:wash ratio of 1:5. These

precautions were taken to prevent sample carryover and
where C i HON concentration in ppm and n exposure achieve baseline separation on the recorder trace. Chain-

ber atmosphere and blood samples were analyzed for
CN- immediately following the sample collection. A

Chamber HCN Gas andBlood C" stock CN- solution (100 mg/L), prepared from NaCN
Dtmerminatsons (purity: 96% by analysis), in 0.1 N NaOH was used for
Chamber HON gas concentrations and blood CN- the preparation of working standards,

levels were determined using an automated Technicon

AutoAnalyzer'" II System consisting of a sampler IV, a
2-speed proportioning pump III, a single-channel colo- For chamber HCNgas concentrations, a 17-mL sample
rimeter, and a pen recorder II (Technicon Instruments ofchamberatmospherewas manually withdrawn into an
Corporation, Tarrytown, NY). The manifold, a acid-washed and oven-dried 30-mL glass syringe from
Technicon cyanide analytical cartridge, incorporated a thte port on the access-door. The volume was immedi-

distillation coil. The coil was attached by a short length ately adjusted to exactly 15 mL, and then, 0.1 N NaOH
of acid-flex tubing to a distillation head and condenser, was drawn until the plunge, reached the 30-mL index.
The methodology employed was a modification of the The syringe was closed with a plastic cap, and the gas-

Technicon Industrial Method No. 312-74W (Technicon, liquid mixture was allowed to equil brate on a rnechani-
1974). cal rocker for 5 min. Portions o' he NaOH solution

containing CN- and 5 working standards were trans-
Reagents used in the assay were: o-phosphoric acid ferred into the AutoAnalyzer sample cups for the CN-

(1,74 M); phosphate buffer (0.01 M; pH 5.2); chloram- analysis. These standards were prepared from the stock
ine-T (0.0142 M); pyridine (0.931 M)-barbituric acid CN- solution; CN- concentrations in the standards were
(0.117 M) solution in 0.17 M HCI. Initially, sample 50, 100, 200, 300, and 400 Jig/L. Standards were ana-
(chamber sample or blood in 0,1 N NaOH; 1.0 mL/ lyzed in triplicate and chamber samples in duplicate.
min), o-phosphoric acid (0.6 mL/min), and air (a bubble Standard curves were constructed each day by plotting

pattern of 2.5 mL/min) were mixed (in a double mixing the absorbance peak heights versusCN- concentrations.
coil) and passed thorough the distillation coil immersed The analytical response was linear over the selected
in a 155* C oil bath; this digestive distillation stage concentration range; average slope, yintercept, and cor-
converts complexed CN- present in the sample to HCN. relation coefficient values were 0,4731, -2,0306, and
Vapors, including HCN gas, from the coil were ad- 0.9999, respectively. Concentrations of HCN gas in the
vanced through the distillation head and, then, through chamber samples were exprcssed as ppm (v/v) at ambient
a condenser having cold (1300) water circulated in its temperature and pressure. HCN concentration in the
outer jacket; the waste (o-phosphoric acid and/or blood gas cylinder was similarly determined.

residues) from the distillation head was removed at the
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Figure 2. Typical Chamber HCN Concentration-Exposure Time Relationships for the

5- and 35-Min Study.
During the exposure of animals to HCN gas, chamber atmosphere samples were manually collected at
selected time intervals, and HCN concentrations in the samples were determined. The gas concentration
at incapacitation was estimated by extrapolating the value of the preceding concentration to the t,. The
HCN exposure concentration was then calculated by Equation (1), as described in the text.
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For blood CN- levels, body cavities of the killed rats distribution of 5-mmn t, values was moderate with a
were quickly opened, and blood was drawn from the spread of 3.5-min from minimum to maximum, but the
descending aorta using a 2.5-cc glass syringe and an 18- 35-man t, measurements had a wide range of 56-mmn
G needle. The collected blood samples were immediately with the 31.1 -mn mean. Blood CN- levels at incapaci-
injected into stoppered glass tubes containing solid so- tation were 2.3 1Ag/mL for 184 ppm HCN and 4.2 gig/
dium heparin (143 USP units) and mixed on a mechani- mL for 64 ppm HCN (p s 0.05); the variation in the
cal rocker for 5 min. The heparinized blood samples blood CN-values was more at the 35-min t, than that at
from the test animals were diluted 1:20 with 0.1 N the 5-mmn ti. In general, variations in the 35-mmn values
NaOH in 10-mL stoppered volumetric flasks prior to ofthese parameters were about 2 times that for the 5-min
the CN- analysis. Also, 5 working standards were pre- values. In comparison to the HCN gas values, variations
pared by adding 0.5 mL aliquots of pooled blood from in the t, and blood CN- values were more; however,
untreated rats to 10-mL volumetric flasks containing variation coefficients for the t, and blood CN- values
approximately 8,0 mL of 0. 1 N NaOH. To this mixture, were not much different from each other within each set
the requisite volumes of the stock CN- solution were of studies. Except for the 5-mmn t, and 35-min HCN gas
added, and the volume was adjusted to 10 mL with the values, the 5-mmn HCN concentration, 35-mmn ti, and 5-
NaOH solution. This yielded working standards for and 35-min blood CN- measurements had normal dis-
blood matrix containing 50, 100,200, 300, and 400 lig tribution patterns (Figure 3), as they were not statisti-
of CN-/L. Portions of these samples and standards were callydifferent from their correspondinggstandard normal
transferred into the AutoAnalyzer sample cups for the population forms (p > 0.05). The 35-nin HCN gas
CN" analysis in triplicate. Standard curves. prepared by measurements extended towards left from the mean.
plotting the absorbance peak heights versusCN-concen- Although the 35-min t, and CN- measurements fol-
trations, were linear for the concentration range. Average lowed the normal distribution patterns at p 0.05, these
valucs of slope, y-intercept, and correlation coefflricnt measurements were distributed more towards right from
were correspondingly 0.2190, 16.3554, and 0.9999, their means.

Statistics As is depicted in Figure 4, the blood CN" level
Values are presented as the mean * SD, and a difference increased as a function of exposure time for both
between means was considered significant at p s; 0.05. HCN exposure concentrations. Mean 1HCN cxpo-
Where possible, data were analyzed at c - 0,05 using the sure concentrations for the 5- and 35-rnin uptake
analysis ofvarianceand Tukey's HSD multiplecompari- study were 183 * 4.4 (n - 16) and 71 :t 3.4 (n - 15)
son test for statistical pairwise differences between the ppm, respectively. Within each set of studies, HCN
groups (Wilkinson, 1989); otherwise, the significance of concentrations for the exposure intervals were not
differences between means was checked by the Student's different from each other (p > 0.05). The I-ICN gas
mtest (SigmaPlot, 1991), The normality of distribution uptakes, as represented by the blood CN" levels
of measurements was established by performing the versus exposure times, were linear; the CN- in
Kolmogorov-Smirnovone-sampletestatcacu0.05 (Miller blood did not appear to attain a steady state prior
and Miller, 1988; Wilkinson, 1989). Slope, y-intercept, to incapacitation. Mean values of slope, y-inter-
and correlation coefficient were calculated by linear cept, and correlation coefficient for the 5-min
regression analysis. uptake study were 0.4007, 0.1666, and 0.9697,

respectively; values of these regression functions
RESUL'k S were correspondingly 0.1518, 0.1145, and 0,9920

for the 35-min uptake study. Slopes of the regres-
The HCN exposure concentration for producing the 5- sion indicated that blood CN- increased at the rate
mintwas184ppm, while it was 64 ppm for the 35-min of 0.401 1tg/mL/min for 183 ppm HCN and at
t, (Table 1); coefficients of variation for these HCN 0.152 ,.Ag/mL/min for 71 ppm HCN.
concentrations were correspondingly 5.4 and 9.5%. Th,
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Table 1. Time-to-Incapacitation (t) and Blood Cyanide (CN') Values for Rats Exposed
to Two Hydrogen Cyanide (I-ICN) Gas Concentrations.

Parameters Valuesa, b

Mean (Range) SD CV%

For 5-IfIn Study

HCN (ppm) 184 (159- 202) 10.0 5.4

tL (min) 5.1 (4.0- 7.5) 0.8 15.7

Blood CN" (pg/mL) at tj 2.3 (1.5 3.7) 0.5 21.7

For 35-MLn Study

HCN (ppm) 64 (46 - 75) 6.1 9.5

t, (min) 31.1 (14.0 - 70.0) 11.2 36.0

Blood CN" (pg/mL) at tt 4.2 (2.3 - 9.1) 1.3 31.0

aMeen values are derived from 50 rats individually exposed to HCN gas;

SD - Standard Deviation; CV - Coefficient of Variation, (SD + Mean) x 100.

bThe data from which values were calculated are listed in Tables 1 and 2 of

the Appendix.
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Figure 3. Ditribution of HCN Exposure Concentrations, t. Values, and Blood CN"
Levels for the 5- and 35-Mm Study.

The frequency distributions for these parameters were based on the measurements derived from 50 rat
experiments (n = 50) for each of the 2 studies. The normality of distribution of measurements was
established by the Kolmogorov-Smirnov one-sample test at a = 0.05. Details are given in the text.
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DISCUSSION

The HCN exposure concentrations of 184 and 64 ppm pharmacological response, regardless of' ae HCN expo-
were determined to produce the 5- and 35-min t, in rats, sure concentration. The high CN- le t the 35-min t
respectively. The nominal variations in the HCN con- :ould be explained by the (i) possibl. lme dependent
ccntrations suggested that ýhe fluctuations in t, values binding ofCN" to non-critical sites, sequestering ofCN"
would be primarily attributed to the changes in the in erythrocytes (a CN- det.oxification mecho niim) (Vesey
individual animal response. The variations in the 35- and Wilson, 1978; McMillan and Svoboda IV, 1982),
min t, and blood CN- values were consistent with the 35- and/or enzymatic conversion ofCN- to a non-toxic form
min gas value distribution and could have been partially (Klaassen, 1990), and (ii) inability of our method to
attributtd to the increasing difficulty in the ti judgment, selectively qucrntitate critical CN-. At the low HCN
when the onset of incapacitation is less acute than at the concentration, the slower gas uptake conceivably al,,
5-mmin HCN gas concentration; Haber's rule (Packham lowed a larger fraction of CI4" to be utilized in the
and Har•ell, 1981) becomes less applicable in the con- detoxification processes, thereby retarding the critical
centration-t1 curve at a lower gas concentration and CN-" reaching a threshold level necessary for the onset of
longer t1, where the "ti" rational function, as a vertical incapacitation. Since the method employed quantitates
asymptote, is less defined (Crane, et al., 1989). There- total blood CN', the determined blood CN" ivel may
fore, a higher coefficient of vatiation would occur for a not necessarily represent a specific level for incapacita-
"longer t," in relation to ,• "shorter ti." The HCN gas tion; however, it is at least an indication of the severity of
accumulated "dose" levels derived from the C't product HCN exposure.
(C HCN exposure couicentration in ppm; t - ti in min)
were calculated to be 938 and 1990 ppmemin at 184 and The blood CN- range observed in our stvdy (1.5-9.1
64 ppm, respectively. These Cot values fall wizhin the pg/mL) is in reasonable agreement w:h the reported
reported ranges for incapacitation in humans (750-2500 ranges in humans (0.7-5.4 pg/lnL) dying from smoke
ppmemin by 200-100 ppm HCN) (Hartzell, 1989), inhalation (Baud, ct al., 1991) and in monkeys (1.2-3.0
cynomolgus monkeys (1248-1900 pprmin by 156- ;pg/mL) at incapacitation (Purser, et al., 1984) and rats
100 ppm HCN) (Purser, et al., 1984), and rats (1200- (3.1-3.7 Vg/mL) at death (Yamamoto, 1977) caused by
2700 ppm-min by 250-130 ppm HCN) (Kaplan and the HCN inhalation. Furthermore, the blood CN-level
Hartzell, 1984). Thus, the Cot values for diese species are of as high as e.4 pg/mL has been quantitated in aircraft
similar. It appears that the rat could be a reasc-ible fire victims (Mayes, 1991; Veronneau. et al., 1992).
model for predicting escape time for humans exposed to While the influence of other combustion products, e.g.,
HCN gas, a view also expressed by Kaplan and Hartzell carbon monoxide, on the overall toxicity in fire victims
(1984). cannot be ruled out, many of the blood CN- values at t,

are equal to or high er than the levels generally considered
The incr:ase in t, by decreasing the HCN exposure to be lethil in humans (Baseltand Cravey, 1989; Hartzell,

concer.tration was not cons'stent with an expected de- 1989).
crease in the 35-min t, blood CN- level; instead, there
wts a substantial increase in blood CN-. The Cot value There was a direct relationship between the HCN
appeared to be a better parameter than the HCN expo- exposure concentration and uptake, as the decrease in
sure concentration for correlating with the blood CN- the HCN concentration by a factor of 2.6 also decreased
level, since the nearly 2-fold incr.-ase in the blood CN" the blood CN- uptake rate by 2.6. Calculated uptake
was compatible with the 2-fold inccase in the Cot value, rates in (vg CN-/mL)/min/ppm HCN for both expo-
Even then, assuming that the measured biood CN- level sures were almost identical, i.e., 2.19 x 10-3 for 183 ppm
is directly melated to the onset of incapacitation, the HCN and 2.14 x 10- for 71 ppm HCN. Thus, this
blood CN- level should theoretically be the same at the relationship can be described by
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APPENDIX

TIME-TO-INCAPACITATION (t1) VALUES AND BLOOD (CN-)

LEVELS AT INCAPACITATION FOR RATS EXPOSED

TO HYDROGEN CYANIDE (HCN) GAS

Al



Table 1.
Data for 5-Min Study.

Rat tj HCN* Blood CN" Rat qf HCN* Blood CN"
No. (min) (ppm) (pg/mL) No. (min) (ppm) (Pg/mL)

1 4.7 190 1.68 26 5.6 193 2.88
2 5,7 171 2.05 27 4.7 198 2.74
3 5.0 161 1.79 28 4.5 202 2.66
4 5.3 181 1.55 29 7.0 182 3.41
5 4.9 181 2.11 30 5.5 183 2.72
6 4.2 177 2.16 31 4.7 186 2.66
7 7.5 181 1.89 32 4.8 188 2.48
8 4.9 190 1.52 33 4.8 178 2.42
9 4.3 178 1.87 34 5.0 179 2.42

10 5.4 184 1.71 35 5.9 173 2.19
11 5.3 184 2.08 36 5.0 190 3.01
12 4.5 187 2.53 37 5,6 179 2.77
13 4.5 193 1.95 38 4.0 191 1.84
14 5.3 193 2.19 39 4.7 192 2.24
1i 4.4 181 1.52 40 4.6 197 2.61
16 4.9 171 2.29 41 4.4 202 2.42
17 5.6 159 2.11 42 4,8 190 2.80
18 6.6 163 2.98 43 4.5 188 1.87
19 6.8 165 1.95 44 5.6 188 2.13
20 6.6 168 2.19 45 4.1 193 2.56
21 4.6 188 2.88 46 4.5 180 1.89
22 4.2 185 2.64 47 5.0 184 2.37
23 7.1 181 3.01 48 4.9 200 1.52
24 5.1 188 2.24 49 4.4 183 2.11
25 5.0 190 3.70 50 4.7 180 1.52

*HCN exposure concentration, see text for definition.

A2



Table 2.

Data for 35-Min Study.

Rat t1  HCN* Blood CN" Rat t1  HCN* Blood CN"
No. (min) (ppm) (pg/mL) No. (min) (ppm) (Pg/mL)

1 40.9 54 4.50 26 43.1 64 6.29
2 22.0 52 3.11 27 41.2 66 3.26
3 28.0 51 2.81 28 53.1 60 6.59
4 35.7 46 2.83 29 22.1 66 3.21
5 34.6 53 3.16 30 30.5 67 5.76
6 34.1 48 3.13 31 38.3 64 5.46
7 26.0 60 3.24 32 26.2 66 4.90
8 56.0 57 5,63 33 24.9 65 4.17
9 23.0 65 4.53 34 38.7 65 4.40

10 21.1 65 3.79 35 21.0 66 4.45
11 33.5 61 5.00 36 14.0 69 2.38
12, 53.5 69 6.08 37 18.2 66 3.29
13 29.6 65 6.06 38 26.5 69 5.00
14 35.0 66 5.23 39 19.4 67 2.51
15 70.0 63 9.06 40 20.2 64 2.28
16 33.5 61 4.62 41 39.1 66 4.68
17 20.5 67 3.13 42 37.5 67 5.71
18 19.0 66 2.51 43 34.8 71 5.25
19 22.5 67 3.57 44 22.0 74 4.17
20 29.0 66 3.81 45 22.8 67 3.47
21 31.7 65 4.15 46 25.9 74 2.61
22 48.4 68 3.89 47 20.8 75 3.34
23 27.5 65 3.72 48 25.4 68 3.66
24 28.3 64 3.94 49 31.5 67 3.26
25 33.2 62 4.53 50 20.0 68 2.33

*HCN exposure concentration, see text for definition.
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Table 3.

Data for Exposure Periods Less Than t,
at Nominal 183 ppm HCN.

Rat Sxposure Time HCN Blood CN"
No. (min) (ppm) (pg/mL)

1 1.0 182 1.07
2 1.0 183 0.49
3 1.0 180 0.38
4 1.0 182 0.83

5 2.0 186 1.49
6 2.0 187 1.17
7 2.0 189 1.12
8 2.0 180 0.91

9 3.0 182 1.28
10 3.0 190 1.31
11 3.0 176 1.58
12 3.0 178 0.83

13 4.0 183 1.87
14 4.0 181 1.25
15 4.0 174 2.17
16 4.0 187 1.60

17 5.0' 176 2.74
18 5.0' 179 2.42
19 5.0* 190 3.01
20 5.0* 184 2.37

*Data for rat4 listed at the 5-min exposure time were selected from the
animals in the Appendix Table 1 for the purpose of comparison only; these
animals (No. 17, 18, 19, and 20) were incapacitated at the time of blood
removal for cN' analyses.
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Table 4.

Data for Exposure Periods Less Than t,
at Nominal 71 ppm HCN.

Rat Exposure Time HCN Blood CN"
No. (min) (ppm) (pg/mL)

1 2.5 70 0.14
2 2.5 67 0.77
3 2.5 77 0.34

4 5.0 75 1.70
5 5.0 69 0,64
6 5.0 74 1.17

7 10.0 72 1.52
8 10.0 68 1.32
9 10.0 74 1.52

10 15.0 66 2.03
11 15.0 67 2.81
12 15.0 72 2.76

13 25.0 69 3.54
14 25.0 71 3.62
15 25.0 67 4.37

16 35.0* 53 3.17
17 35.0* 66 5.23
18 35.0' 71 5.25

*Data for rat. listed at the 35-min exposure time were selected from the
animals in the Appendix Table 2 for the purpose of comparison only; these
animals (No. 16, 17, and 18) were incapacitated at the time of blood removal
for CN" analyses.
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